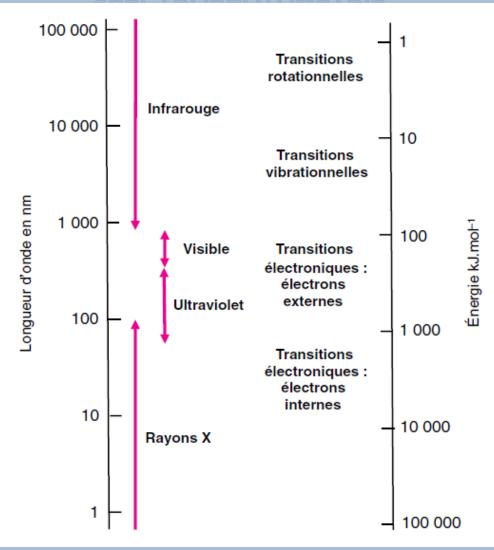
Techniques chimiques pour la biologie

MÉTHODES SPECTROSCOPIQUES

Chapitre III

SPECTROPHOTOMÉTRIE UV/VISIBLE

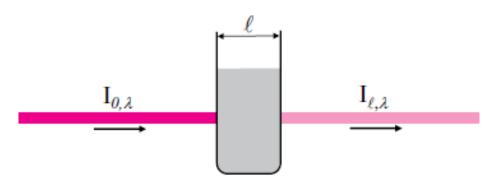

MÉTHODES SPECTROSCOPIQUES SPECTROPHOTOMÉTRIE

La **spectrophotométrie** est l'une des techniques analytiques les plus utilisées en biochimie. Elle permet d'identifier des molécules à l'aide de leur **spectre d'absorption** de la lumière dans le domaine du visible ou du proche ultraviolet. La concentration de composés connus peut être déterminée en mesurant l'absorption de leurs solutions à une ou plusieurs longueurs d'onde.

MÉTHODES SPECTROSCOPIQUES SPECTROPHOTOMÉTRIE

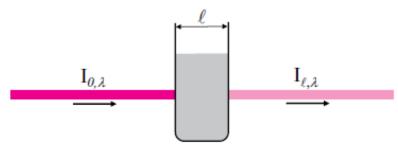
Les spectrophotomètres utilisés au laboratoire mesurent l'absorption de la lumière appartenant aux domaines du visible et de l'ultraviolet (UV) ; les longueurs d'onde (λ) s'étendent de 800 à 400 nm pour le visible, et de 400 nm à 220 nm pour le proche ultra-violet. Ces radiations sont préférentiellement absorbées par les électrons des liaisons π délocalisées.

SPECTROPHOTOMÉTRIE



MODULE: TECHNIQUES CHIMIQUES POUR LA BIOLOGIA

SPECTROPHOTOMÉTRIE


LOI DE BEER-LAMBERT

La loi de Lambert-Beer décrit l'absorption d'une lumière de longueur d'onde λ (lumière monochromatique) en fonction de la concentration c de la substance absorbante et de l'épaisseur ℓ du milieu traversé par la lumière, que l'on nomme chemin optique. Le faisceau lumineux incident, d'intensité $I_{0,\lambda}$ traverse la solution contenue dans une cuvette transparente ; à la sortie de la cuvette, l'intensité $I_{\ell,\lambda}$ du faisceau lumineux est mesurée par un détecteur :

SPECTROPHOTOMÉTRIE

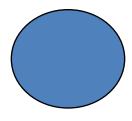
LOI DE BEER-LAMBERT

Connaissant l'intensité incidente $I_{0,\lambda}$, et l'intensité transmise $I_{\ell,\lambda}$, on définit la **transmittance** I_{λ} et l'absorbance I_{λ} :

$$T_{\lambda} = \frac{I_{\ell,\lambda}}{I_{0,\lambda}}$$
 $A_{\lambda} = -\log_{10} T_{\lambda}$

La loi de Lambert-Beer donne la variation de la transmittance en fonction de la concentration de la substance absorbante et de la longueur du chemin optique :

$$\log_{10} T_{\lambda} = -k_{\lambda} c \ell$$


On en déduit l'expression de l'absorbance :

$$A_{\lambda} = k_{\lambda} c \ell$$

La concentration de la substance est exprimée en $\operatorname{mol} \cdot \operatorname{L}^{-1}(c_M)$ et le chemin optique en cm. Le coefficient k_λ est donc exprimé en $\operatorname{L} \cdot \operatorname{mol}^{-1} \cdot \operatorname{cm}^{-1}$. On le nomme absorptivité molaire ou coefficient d'absorption molaire, symbolisé par $\varepsilon_{M,\lambda}$:

$$A_{\lambda} = \varepsilon_{M,\lambda} c_M \ell$$

SPECTROPHOTOMÉTRIE

Spectrophotomètre

SPECTROPHOTOMÉTRIE

Exercice 1:

Une eau polluée contient du chrome ($M=52~{\rm g\cdot mol}^{-1}$) à la concentration massique d'environ 0,1 ppm. On choisit, pour son dosage, le complexe ${\rm Cr}^{\rm VI}$ avec le diphénylcarbazide ($\lambda_{\rm max}=540~{\rm nm},~\epsilon_{\rm max}=41~700~{\rm L\cdot mol}^{-1}\cdot {\rm cm}^{-1}$).

Proposer une valeur du trajet optique de la cuve pour que l'absorbance soit de l'ordre de 0,40.

 $La~concentration~d'une~solution~\grave{a}~0,1~ppm~est~de~0,1~\times~10^{-3}~g\cdot L^{-1}~soit~1,92~\times~10^{-6}~mol\cdot L^{-1}.$

À partir de $A = \varepsilon \cdot \ell \cdot c$, on trouve $\ell = 4,98$ cm. Une cuve de 5 cm d'épaisseur est donc bien adaptée.

SPECTROPHOTOMÉTRIE

Exercice 2:

Une solution aqueuse de permanganate de potassium ($c = 1,28 \times 10^{-4} \text{ mol} \cdot \text{L}^{-1}$) a une transmittance de 0,5 à 525 nm, si on utilise une cuve de 10 mm de parcours optique.

- a) Calculer le coefficient d'absorption molaire du permanganate pour cette longueur d'onde?
- b) Si on double la concentration, calculer l'absorbance et la transmittance de la nouvelle solution?

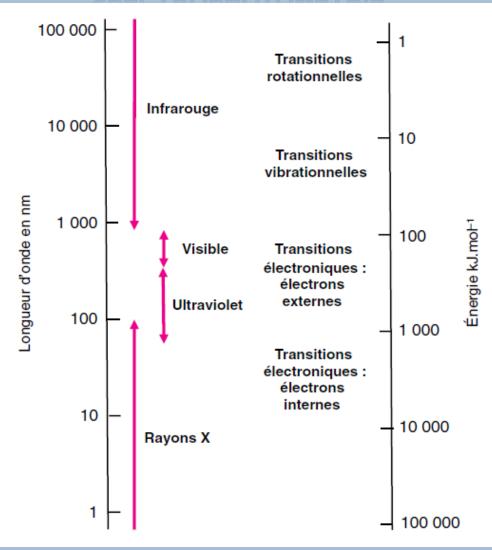
- a) Si T = 0.5, $A = \log 1/0.5 = 0.3$; $\varepsilon = 2.344 \text{ L} \cdot \text{mol}^{-1} \cdot \text{cm}^{-1}$.
- b) Si on double la concentration, A = 0.6. Donc $\log 1/T = 0.6$ soit T = 0.25.

SPECTROMÉTRIE INFRAROUGE (IR)

SPECTROMÉTRIE INFRAROUGE (IR)

En 1905, Albert Einstein, introduisit le concept de <u>photon</u>, <u>quantum</u> d'énergie électromagnétique

$$E = h.v$$

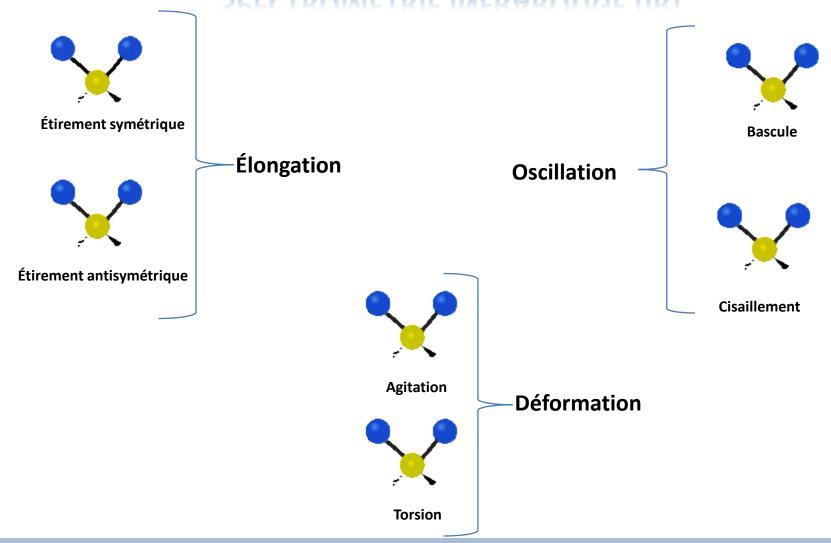

où v est la fréquence de l'onde (exprimée en hertz Hz) et h est la constante de Planck. Pour la relier à la longueur d'onde, on utilise la formule

$$v = c/\lambda$$

où λ est la <u>longueur d'onde</u> (en mètre m) et c est la vitesse de la lumière.

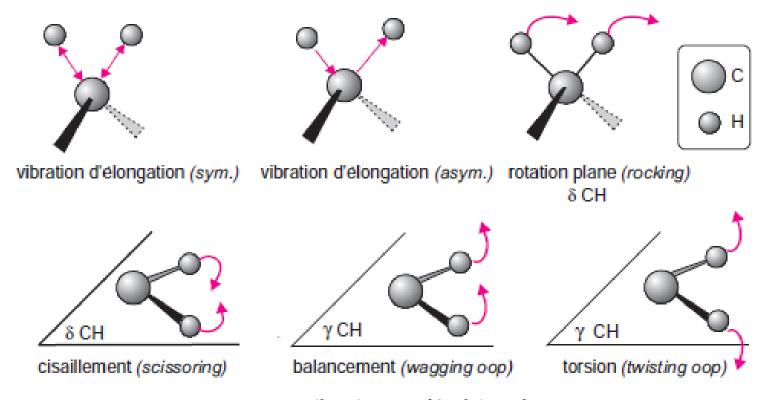
constante de Planck = $6,62607004 \times 10^{-34} \text{ m}^2 \text{ kg} / \text{s}$

SPECTROPHOTOMÉTRIE



MODULE: TECHNIQUES CHIMIQUES POUR LA BIOLOGIE

SPECTROMÉTRIE INFRAROUGE (IR)


800 nm <λ<300 000 nm Faiblement énergétique

SPECTROMÉTRIE INFRAROUGE (IR)

MODULE: TECHNIQUES CHIMIQUES POUR LA BIOLOGIE

SPECTROMÉTRIE INFRAROUGE (IR)

Vibrations moléculaires du CH₂.

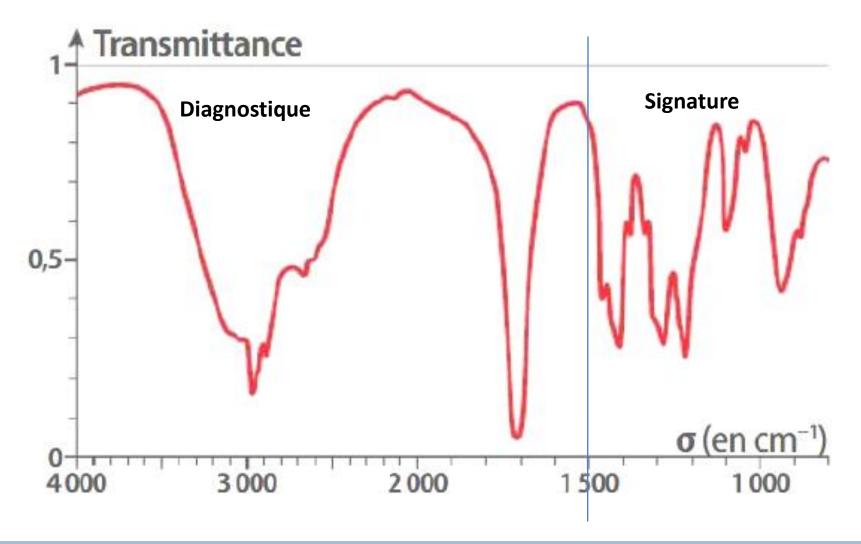
Vibrations caractéristiques d'élongation et de déformation, dans le plan et hors du plan (oop, « out of plane »). Dans l'infrarouge, la position et l'intensité des bandes sont modifiées par les associations entre molécules, la polarité des solvants, etc.

SPECTROMÉTRIE INFRAROUGE (IR)

Pour modéliser les vibrations des liaisons, on se réfère à l'oscillateur harmonique, ensemble formé par deux masses pouvant glisser sans frottement sur un plan et réunies par un ressort. Si on écarte les deux masses d'une valeur x_0 par rapport à la distance d'équilibre Re, et qu'on relâche le système, celui-ci se met à osciller avec une période qui dépend de la constante de raideur du ressort k ($N \cdot m^{-1}$) et des masses en présence. La fréquence approchée est donnée par la loi de \underline{Hooke} dans laquelle μ (kg) représente la masse réduite du système.

 $\nu_{\text{Vib.}} = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$

$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$

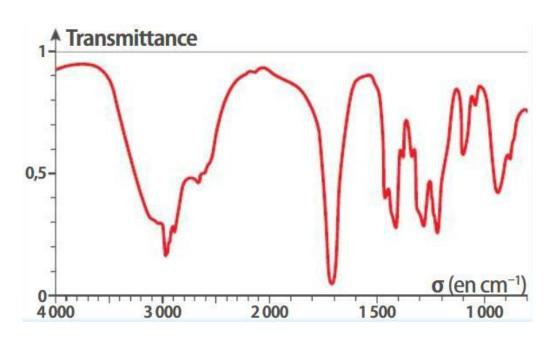

$$\overline{\nu} = \frac{1}{2\pi c} \sqrt{\frac{k}{\mu}}$$

Une molécule diatomique représentée sous la forme d'un oscillateur harmonique Le terme d'oscillateur harmonique, vient de ce que l'élongation est proportionnelle à la force exercée, alors que la fréquence ν_{Vib} en est indépendante.

$$\overline{\nu} = \frac{1}{\lambda} = \frac{\nu}{c}$$

 $v = c/\lambda$

SPECTROMÉTRIE INFRAROUGE (IR)



MODULE: TECHNIQUES CHIMIQUES POUR LA BIOLOGIE

SPECTROMÉTRIE INFRAROUGE (IR)

Exercice:

Une espèce chimique inconnue est contenue dans un flacon trouvé dans un laboratoire de chimie. Il peut s'agir d'acide butanoïque ou de butan-1-ol. Pour identifier le contenu du flacon, on effectue une analyse par spectroscopie infrarouge. On obtient le spectre IR suivant :

Données: nombres d'ondes σ associés à des liaisons :

Liaison	O — H alcool	O — H acide carboxylique	C=0
σ (cm ⁻¹)	3 200-3 400	2 600-3 200	1 700-1 760
	Bande forte et large	Bande forte et très large	Bande forte et fine

MÉTHODES SPECTROSCOPIQUES SPECTROMÉTRIE INFRAROUGE (IR)

Exercice:

Le butan-1-ol est un alcool. Il contient un groupe hydroxyle -OH. D'après les données, son spectre infrarouge contient une bande d'absorption intense et large vers 3300 cm⁻¹. L'espèce inconnue n'est donc pas le butan-1-ol.

L'acide butanoïque est un acide carboxylique. Il possède une liaison C = O et une liaison -OH. D'après les données, son spectre infrarouge contient une bande d'absorption forte et fine vers 1700 cm⁻¹ (caractéristique de la liaison C = O) et une bande d'absorption intense et large vers 3000 cm⁻¹ (caractéristique de la liaison -OH). On retrouve bien ces deux bandes d'absorption sur le spectre IR de l'espèce analysée. Le flacon contient donc de l'acide butanoïque.