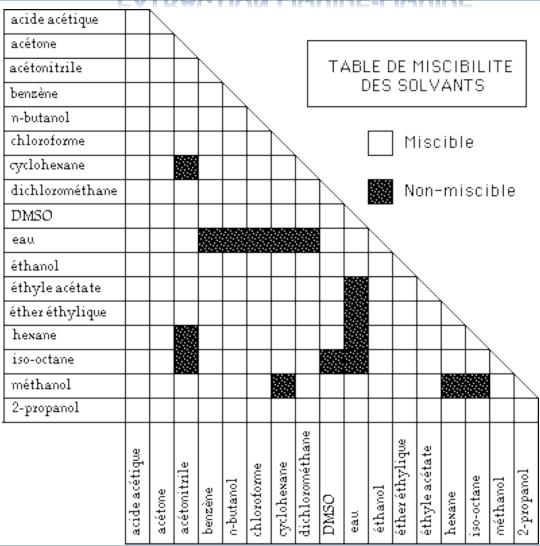
Techniques chimiques pour la biologie


TECHNIQUES D'EXTRACTION

Chapitre I

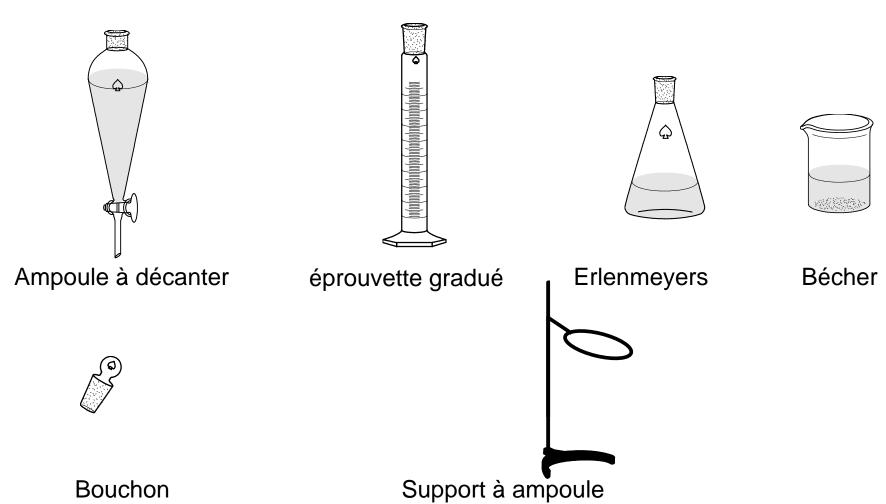
L'extraction liquide-liquide est une méthode de purification basée sur la différence de solubilité d'un soluté dans deux phases <u>non miscibles</u>.

On utilise habituellement une phase aqueuse et une phase organique.

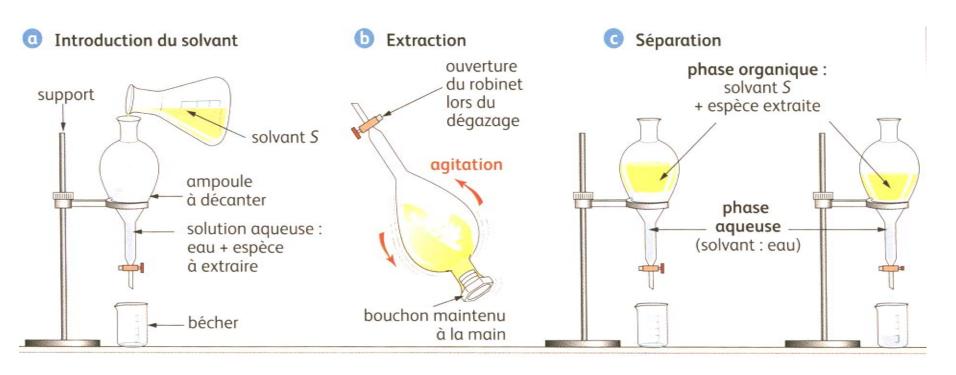
EXTRACTION LIQUIDE-LIQUIDE

EXTRACTION LIQUIDE-LIQUIDE

Solvants	Téb. en °C	densité	Avantages	Inconvénients
Acétate d'éthyle	77	0.90	Bon pouvoir de	Inflammable, modérément
Acetate d ethyle	77	0.90	solubilisation	difficile à éliminer
Cyclohexane	81	0.78	Peu toxique	Facilement inflammable
Dichloro-1,2-éthane	83	1.26	Peu inflammable	Modérément toxique, vapeurs
Dicinoro-1,2-ethane	0.5	1.20	reu iiiiaiiiiiabie	irritantes
Dichlorométhane	40	1.34	Facile à éliminer	Forme des émulsions, nocif
Ether éthylique	35	0.71	Facile à éliminer	Très inflammable
Hexane	69	0.66	Facile à éliminer	Très inflammable
Pentane	36	0.63	Facile à éliminer	Très inflammable
Toluène	111	0.87	Peu toxique	Inflammable
Trichloroéthylène	87	1.46	Ininflammable	Modérément toxique


Notez bien la <u>densité</u> des différents solvants. Cela nous permettra de savoir si la phase organique se retrouve au <u>dessus</u> ou en <u>dessous</u> de la phase aqueuse dans l'ampoule à décanter.

Principe de l'extraction


L'extraction consiste à faire passer un produit d'un solvant dont il est difficile à séparer (exemple: eau) à un autre solvant dont il sera facilement isolable (solvant organique).

EXTRACTION LIQUIDE-LIQUIDE

Matériel utilisé:

EXTRACTION LIQUIDE-LIQUIDE

Étapes de l'extraction liquide-liquide

EXTRACTION LIQUIDE-LIQUIDE

Vidéo extraction liquide-liquide

La solubilité d'un corps pur dans un solvant est en fonction de sa polarité.

Deux composés de polarité proche sont solubles entre eux, alors qu'un composé non polaire est insoluble dans un solvant polaire (et vice versa).

			REMPLISSAGE DES SOUS-COUCHES s, p, d, f																
		s^1	s^2	d^1	d^2	d^3	d^4	$\begin{pmatrix} n - d^5 \end{pmatrix}$	- 1) d ⁶	d ⁷	d ⁸	d^9	d^{10}	p^1	p ²	p^3) p ⁴	p ⁵	p ⁶
principal)	1	1 1 H hydrogène 1,0				re de mass isotope le abon	plus —	——— <u>—</u>	A V	1	symbole			Cas	s parti	culier	He:	$1 s^2$	⁴ ₂ He hélium 4,0
1	2	⁷ Li lithium 6,9	9 Be béryllium 9,0		nombre ou numéro	e de charg	e		Z A nom		l'élémer masse a	tomique		11 B 5 bore 10,8	12 C 6 C carbone 12,0	14 N 7 azote 14,0	16 O 8 O oxygène 16,0	19 F 9 f 19,0	²⁰ Ne ^{néon} ^{20,2}
quantique	3	23 Na 11 Na sodium 23,0	24 Mg 12 Mg magnésium 24,3	,	od Humero	atomique			M ←		moyenn	e (Da)		27 Al 13 Al aluminium 27,0	28 Si 14 Si silicium 28,1	31 P 15 P phosphore 31,0	32 S 16 S soufre 32,1	35 Cl 17 Cl chlore 35,5	40 Ar 18 Ar argon 39,9
(nombre c	4	39 K 19 K potassium 39,1	40 Ca calcium 40,1	45 Sc 21 Sc scandium 45,0	48 Ti 22 Ti titane 47,9	51 V 23 V vana dium 50,9	52 Cr chrome 52,0	55 Mn 25 manganèse 54,9	⁵⁶ Fe ^{fer} ^{55,8}	⁵⁹ Co 27Co cobalt 58,9	58 Ni 28 Ni nickel 58,7	63 Cu 29 Cu cuivre 63,5	64 Zn zinc 65,4	69 Ga gallium 69,7	74 Ge 32 Ge germanium 72,6	75 A S arsenic 74,9	80 Se 64 Se sélénium 79,0	79 Br 35 brome 79,9	84 Kr 36 Krypton 83,8
N	5	85 37 Rb rubidium 85,5	88 Sr strontium 87,6	89 Y 39 Y yttrium 88,9	90 Zr 21 zirconium 91,2	93 Nb niobium 92,9	98 Mo 42 Mo molybdène 95,9	98 Tc technétium 98,9	¹⁰² Ru ₄₄ Ru ruthéniu m 101,1	103 Rh 45 Rh rhodium 102,9	106 Pd 46 Pd palkadium 106,4	¹⁰⁷ Ag argent 107,9	114 Cd 48 Cd cadmiu m 112,4	¹¹⁵ In 49 In indium 114,8	120 Sn 50 Sn étain 118,7	121 Sb 51 Sb antimoine 121,7	130 Te 52 Te tellure 127,6	127 53 I iode 126,9	129 54 Xe xénon 131,3
COUCHES	6	133 55 Cs césium 132,9	138 Ba 56 Ba baryum 137,3	L *	180 Hf 72 Hf ha fritum 178,5	¹⁸¹ Ta ⁷³ Ta tantale 180,9	184 W 74 W tungstène 183,9	187 75 Re rhénium 186,2	192 76 Os osmium 190,2	193 77 Ir iridium 192,2	195 78 Pt platine 195,1	¹⁹⁷ 79 Au or 197,0	²⁰² Hg 80 Hg mercure 200,6	205 81 Tl thallium 204,4	208 82 Pb plomb 207,2	209 83 Bi bismuth ≈ 209,0	210 84 Po polonium ≈ 209	210 85 At astate ≈ 210	222 86 Rn radon ≈ 222
S	7	²²³ ₈₇ Fr	²²⁶ Ra ₈₈ Ra _{radium}	A	267 Rf 104 Rf rutherfordium	268 Db 105 dubnium	106 Sg seaborgium	107 Bh	108Hs	109 Mt	110 Ds	Rg 111 Rg roentgenium							

Sous-							(n – 2	2)							(n - 1)
couches	f ¹	f²	f³	f ⁴	f ⁵	f ⁶	f ⁷	f ⁸	f ⁹	f ¹⁰	f ¹¹	f ¹²	f ¹³	f ¹⁴	d ¹
* Lanthanides	139 La 57 La lanthane 138,9	140 Ce 58 cérium 140,1	141 Pr 59 Pr praséodyme 140,9	142 Nd 60 Nd néodyme 144,2	146 Pm 61 Pm prométhium ≈ 145		153 Eu europium 152,0	158 Gd 64 Gd gadolinium 157,2	159 Tb 65 terbium 158,9	164Dy 66Dy dysprosium 162,5		166 Er 68 erbium 167,3	169 Tm 69 thulium 168,9	174 Yb 70 ytterbium 173,0	175 Lu 71 Lu lutétium 175,0
** Actinides	227 A c 89 A c actinium ≈ 227	232 Th 90 Th thorium 232,0	231 Pa 91 Pa pro tactinium 231,0	238 U 92 uranium 238,0	237 Np 93 Np neptunium ≈ 237	244 Pu 94 Pu plutonium ≈ 244	243Am 95Am américium ≈ 243	247 Cm 96 curium ≈ 247	247 Bk 97 Bk berkélium ≈ 247	251 Cf 98 Cf californium ≈ 251	²⁵⁴ ES einsteinium ≈ 254	257Fm 100Fm fermium ≈ 257	258 Md 101 Md mandélévium ≈ 258	259 No 102 No nobélium ≈ 259	260 Lr 103 Lr lawrencium ≈ 260

≈ 276

≈ 281

≈ 280

**

≈ 267

≈ 268

≈ **271**

≈ 272

≈ 277

≈ 223

226

Coefficient de partage

Lors de la mise en présence d'un composé et de deux liquides non miscibles, il s'établit un équilibre caractérisé par le rapport des concentrations du soluté dans chacune des deux phases.

Cet équilibre est fixe pour des conditions thermodynamiques fixes. Soit un produit A qu'on veut extraire d'une phase aqueuse:

Coefficient de partage

$$K = \frac{C_{org}^{A}}{C_{H_2O}^{A}}$$

EXTRACTION LIQUIDE-LIQUIDE

Coefficient de partage

Soit un produit A qu'on veut extraire d'une phase aqueuse:

Soit: m₀ la masse initiale du composé A dans l'eau m₁ la masse restante du composé A dans l'eau après une extraction m la masse du composé extraite par le solvant

$$K = \frac{C \text{ org}}{C \text{ aq}} = \frac{m}{V \text{ org}} \frac{V \text{ aq}}{m_1}$$

Puisque m1 = m_0 -m:

$$K = \frac{(m_0 - m_1)Vaq}{m_1 \ Vorg} \qquad m_1 = \frac{m_0 \ Vaq}{K \ Vorg + Vaq}$$

Si l'on effectue une deuxième extraction avec le même volume de solvant:

$$m_2 = \frac{m_1 \ Vaq}{K \ Vorg + Vaq} = m_0 \left(\frac{Vaq}{K \ Vorg + Vaq} \right)^2$$

EXTRACTION LIQUIDE-LIQUIDE

Coefficient de partage

On obtient la formule suivante avec n extractions:

$$m_n = m_0 \left(\frac{Vaq}{K \ Vorg + Vaq} \right)^n$$

Soit 100 g d'un composé dans l'eau (50 mL), avec un coefficient de partage de 1. Comparons:

- 4 extractions de 50 mL $m_4 = 100 \text{ x } (50 / 100)^4 = 6.25 \text{ g}$

- 2 extractions de 100 mL $m_2 = 100 \text{ x } (50 / 150)^2 = 11.11 \text{ g}$

Il reste plus de produit dans la phase aqueuse après deux extractions avec 100 mL de solvant, qu'après quatre extractions avec 50 mL

Il vaut mieux faire 4 extractions avec 50 mL que deux extractions avec 100 mL.

EXTRACTION LIQUIDE-LIQUIDE

Vidéo extraction liquide-liquide + séchage

EXTRACTION LIQUIDE-LIQUIDE

Solvant	eau	éthanol	éther
température d'ébullition	100°C	80°C	35°C
densité	1,0	0,80	0,71
miscibilité à l'eau	oui	oui	non
solubilité du benzaldéhyde	peu soluble	très soluble	très soluble

On introduit dans un tube à essai 2mL d'eau et 2mL d'éthanol, puis on agite et on laisse reposer le mélange. Décris ce que l'on observe en le justifiant.

L'eau et l'alcool sont des liquides miscibles donc en les mélangeant on obtient un seul liquide homogène.

EXTRACTION LIQUIDE-LIQUIDE

Solvant	eau	éthanol	éther
température d'ébullition	100°C	80°C	35°C
densité	1,0	0,80	0,71
miscibilité à l'eau	oui	oui	non
solubilité du benzaldéhyde	peu soluble	très soluble	très soluble

On introduit dans un tube à essai 2mL d'eau et 5mL d'éther, puis on agite et on laisse reposer le mélange. Décris ce que l'on observe en le justifiant. Fais un schéma de l'expérience après avoir laissé reposer le mélange.

L'eau et l'éther sont des liquides non miscibles donc, même après agitation, on obtient 2 phases séparées. L'éther qui est moins dense que l'eau se trouve au dessus de l'eau.

EXTRACTION LIQUIDE-LIQUIDE

Exercices 2

Solvant	eau	éthanol	éther
température d'ébullition	100°C	80°C	35°C
densité	1,0	0,80	0,71
miscibilité à l'eau	oui	oui	non
solubilité du benzaldéhyde	peu soluble	très soluble	très soluble

Le sirop d'orgeat est une solution aqueuse sucrée contenant un arôme à l'odeur d'amande amère : le benzaldéhyde.

On se propose d'extraire le benzaldéhyde de ce sirop.

Pour effectuer cette extraction, on introduit 20mL de ce sirop dans une ampoule à décanter et on rajoute 50mL d'un solvant à choisir parmi l'éthanol et l'éther.

1- Lequel de ces deux solvants n'est pas utilisable pour cette extraction ? pourquoi ?

L'éthanol n'est pas utilisable car il est miscible à l'eau, donc il va se mélanger au sirop d'orgeat et on obtiendra une seule phase liquide.

EXTRACTION LIQUIDE-LIQUIDE

Exercices 2

Solvant	eau	éthanol	éther
température d'ébullition	100°C	80°C	35°C
densité	1,0	0,80	0,71
miscibilité à l'eau	oui	oui	non
solubilité du benzaldéhyde	peu soluble	très soluble	très soluble

Le sirop d'orgeat est une solution aqueuse sucrée contenant un arôme à l'odeur d'amande amère : le benzaldéhyde.

On se propose d'extraire le benzaldéhyde de ce sirop.

Pour effectuer cette extraction, on introduit 20mL de ce sirop dans une ampoule à décanter et on rajoute 50mL d'un solvant à choisir parmi l'éthanol et l'éther.

2- L'autre solvant te paraît-il bien adapté à cette extraction ?

L'éther est bien adapté à cette extraction car il n'est pas miscible à l'eau, et le benzaldéhyde que l'on souhait extraire du sirop d'orgeat est très soluble dans l'éther mais peu soluble dans l'eau.

EXTRACTION LIQUIDE-LIQUIDE

Exercices 3

Le coefficient de partage de l'iode (I_2) entre les deux solvants non-miscibles : tétrachlorométhane et eau, est égal à 100 à 25 °C. À 10 ml de solution aqueuse d'iode à 10 g/l, on ajoute 10 ml de tétrachlorométhane (CCl_4).

Donnée : l₂ est plus soluble dans le tétrachlorométhane que dans l'eau.

Question : Déterminer la concentration en iode dans le tétrachlorométhane et dans l'eau, après agitation et décantation.

Concentration dans le tétrachlorométhane (solvant organique) = 9,9 g/l Concentration dans l'eau (solvant aqueux) = 0,099 g/l

<u>Relargage</u>

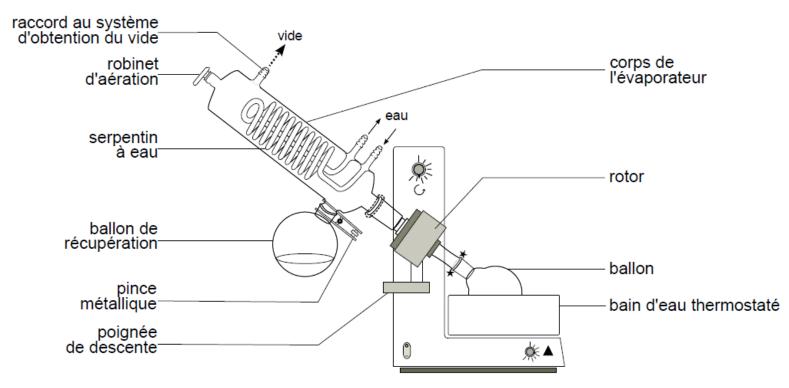
Un sel (très souvent du chlorure de sodium NaCl_(s)) peut être ajouté à la phase aqueuse, ce qui modifie l'équilibre de partage. Cette étape, appelée relargage, permet de mobiliser les molécules d'eau encore piégées dans la phase organique (déshydratation de la phase organique) et de diminuer la solubilité du produit d'intérêt dans la phase aqueuse.

Lavage de la phase organique

Généralement, les phases organiques récupérées sont lavées par un solvant Aqueux (l'eau) afin d'en éliminer certaines impuretés (traces d'acides, de sels...). Le produit d'intérêt reste alors dans la phase organique : <u>il ne change pas de phase</u> durant cette opération <u>contrairement à l'extraction</u>.

Dans le cas d'impuretés acides ou basiques, le pH de la solution aqueuse utilisée pour le lavage doit être judicieusement choisi de sorte à ioniser les impuretés pour les faire passer plus facilement dans la phase aqueuse.

Séchage d'une phase organique


L'eau est partiellement miscible avec la majorité des solvants, il en reste donc toujours des traces dans les phases organiques après extraction et lavage même si ces traitements sont parfaitement réalisés. Le <u>séchage</u> d'une phase liquide organique consiste alors à <u>éliminer l'eau</u> encore présente.

Séchage d'une phase organique

Les desséchants sont des **sels anhydres**. Ils doivent être inertes chimiquement et absorber l'eau **rapidement et efficacement sans se dissoudre** dans le milieu organique à sécher. Pour cela, les sels les plus couramment utilisés sont le **sulfate de magnésium anhydre** MgSO₄ (s) ou le **sulfate de sodium anhydre** Na₂SO₄ (s).

EXTRACTION LIQUIDE-LIQUIDE

Évaporateur rotatif

L'évaporateur rotatif permet d'éliminer le solvant par une **distillation rapide** et **efficace** de ce dernier, sans exposer les molécules extraites (parfois fragiles) à un chauffage important et prolongé. Le produit débarrassé de tout solvant est obtenu généralement sous forme d'une huile ou d'une poudre

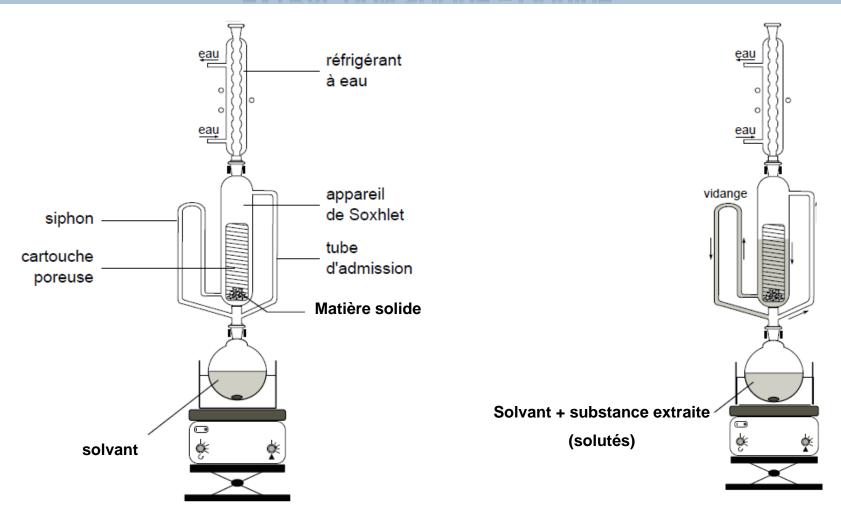
EXTRACTION LIQUIDE-LIQUIDE

Évaporateur rotatif

Solvants	T _{éb} (/°C) sous 1 bar	Pression requise /mbar pour ébullition à 40 °C
Toluène	110	76
Eau	100	72
Cyclohexane	81	235
Éthanol	79	175
Tétrahydrofurane (THF)	67	357
Méthanol	65	337
Acétone	56	556

EXTRACTION LIQUIDE-LIQUIDE

Vidéo évaporateur rotatif



EXTRACTION SOLIDE - LIQUIDE

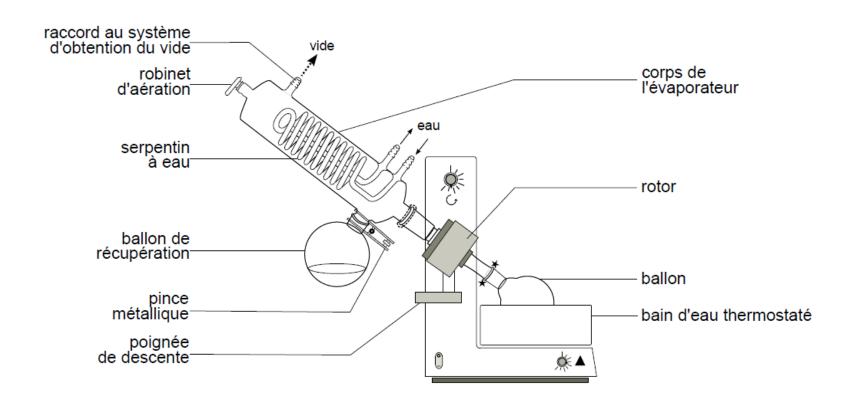
L'extraction **solide-liquide** est une opération physique de transfert de matière entre une **phase solide**, qui contient la **substance à extraire** et une **phase liquide** (le solvant d'extraction)

Suite au contact entre le solvant et le solide hétérogène, les substances ayant une <u>affinité</u> pour le **solvant** sont solubilisées et passent **de la phase solide** vers **la phase liquide**. Au cours de l'extraction, leurs teneurs (fractions) dans la phase solide diminuent et leurs concentrations dans la phase liquide augmentent

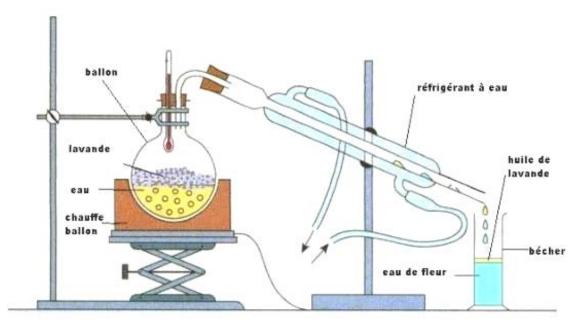
EXTRACTION SOLIDE - LIQUIDE

Soxhlet

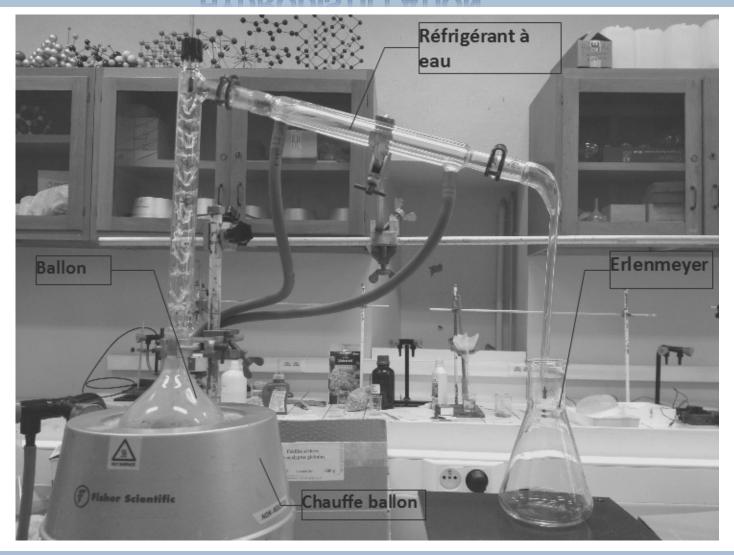
EXTRACTION SOLIDE - LIQUIDE


la matière végétale est placée dans une cartouche, et remplie de solvant frais condensé à partir d'un ballon à distiller. Quand le liquide atteint le niveau de débordement, un siphon aspire la solution de la cartouche et la décharge de nouveau dans le ballon à distiller, portant les corps dissous extraits dans le liquide en bloc. Dans le ballon, le corps dissous (soluté) est séparé du solvant par distillation. Le soluté reste dans le flacon et le solvant frais passe de nouveau dans le lit de solide. L'opération est répétée jusqu'à ce que l'extraction complète soit réalisée.

EXTRACTION SOLIDE - LIQUIDE


Vidéo Soxhlet

EXTRACTION SOLIDE - LIQUIDE


HYDRODISTILLATION

L'hydrodistillation est une méthode d'extraction dont le rôle est d'entraîner les composés volatiles des produits naturels avec la vapeur d'eau.

On porte à ébullition un mélange eau + végétal : les cellules du végétal éclatent et libèrent alors les espèces chimiques odorantes qui (<u>non solubles dans l'eau</u>) sont entraînées par la vapeur d'eau puis récupérées dans un autre récipient après condensation dans le réfrigérant.

HYDRODISTILLATION

TECHNIQUES D'EXTRACTION HYDRODISTILLATION

L'hydrodistillat obtenu contient une phase aqueuse ainsi qu'une phase organique constituée par l'huile essentielle. Lorsque les densités de ces deux phases sont proches on peut observer une émulsion.

Rendement

- 1- la quantité d'extrait sec par rapport à la quantité initiale de la source solide (végétale, animale ...etc);
- 2- la quantité de la substance d'intérêt extraite (ou du groupe de substances d'intérêt) par rapport à la quantité initiale de la source végétale ;
- 3- la quantité de la substance d'intérêt extraite par rapport à la quantité de cette substance initialement présente dans la source végétale.

Après une hydro distillation de 150 g d'origan (séché pendant 7 jour à l'ombre), on a obtenu 2,2 ml d'huile essentielle (H.E) avec une masse volumique = 0,87 kg/l.

Calculer le rendement de l'extraction de l'E.H en % (masse/masse de matière sèche).

Calculer le rendement de l'extraction de l' **E.H** en % (volume/masse de matière sèche).

Calculer le rendement de l'extraction du <u>carvacol</u> en % (masse/masse de matière sèche).

Composition chimique de l'huile essentielle d'Origan

Constituent	Percentage	Constituent	Percentage
α-thujene	0.90	terpinolene	0.12
α-pinene	0.73	linalool	1.53
camphene	0.15	camphor	0.36
1-octen-3-ol	0.61	borneol	1.48
β-pinene	0.38	terpinen-4-ol	0.13
myrcene	1.52	p-cymen-7-ol	0.83
α-phellandrene	0.10	α-terpineol	0.13
δ-3-carene	0.14	thymol	1.57
α-terpinene	1.39	carvacrol	49.52
p-cymene	21.22	β-caryophyllene	0.94
limonene	0.70	δ-cadinene	0.44
γ-terpinene	14.21	caryophyllene oxide	0.25
fenchone	0.26	, , , ,	